Paper 2003-1-2105

FENSAP-ICE: Applications to Complete Rotorcraft Configurations

Pascal Tran, Guido Baruzzi, Iyad Akel and Wagdi G. Habashi Newmerical Technologies International, Montreal, Canada

Jim C. Narramore
Bell Helicopter Textron, Inc., Fort Worth, USA

Outline

- Introduction
- Computational Approach
- Numerical Results
- Conclusions
- Future Work

Introduction (1)

- Traditionally, rotorcraft have limitations on operations in icing conditions
- Objective to produce affordable all-weather rotorcraft
- Means selected is to improve numerical simulation methods to reduce and focus development testing

Introduction (2)

- Develop a full 3-D rotorcraft icing simulation system
- Run development test cases with increasing geometrical complexity from 2-D airfoil to full rotorcraft including rotors
- Use existing CFD 3-D technology and apply to icing field
- Benefit from cross-pollination from fields such as blood flow simulation or combustion

Introduction (3)

- It is believed that SLD requirements such as coalescence, breakup and splashing can be modeled using mature technology from other fields
- Method must not discriminate according to geometry analyzed (nacelle vs. wing) but must be generic enough to handle all bodies in similar fashion
- Resulting tool must be upgradeable, synchronous with tools used in Aero, traceable

Introduction (4)

- 3-D CFD may be thought to be expensive but the *incremental* cost of icing analysis is small compared to generating meshes and solving viscous flows
- Such meshes and viscous flow solutions have in general already been carried out by Aero or CFD groups. Ignoring them for icing analysis is a waste of valuable information
- 3-D CFD cost is small compared to experimental testing
- 3-D CFD cost pales when compared to flight testing
- 3-D CFD is used to complement or focus development or certification testing

Computational Approach (1)

- The FENSAP-ICE icing simulation system is comprised of 4 modules: clean/degraded flow, droplet impingement, ice growth and conjugate heat transfer
- Non-thermal systems only require flow and droplet impingement for design and analysis
- Hot air and electro-thermal systems design and analysis require water runback, ice growth and conjugate heat transfer

Computational Approach (2)

A Second Generation Integrated *System* for (Aero + In-flight Icing) Simulation and Certification

Computational Approach (3) - Flow Solver

- Any CFD (Euler/N-S) code: shown here is a Fluent solution, after mesh adaptation with OptiMesh
- FENSAP, FENSAP-ICE's native CFD module, is based on FEM
- Includes k-epsilon and k-omega low-Re and high-Re turbulence models
- Includes Spalart-Allmaras turbulence model, with fixed transition and surface roughness
- Includes mesh movement using an ALE method

Icing/Ground De-icing International Conference, Chicago, June 2003

Computational Approach (4) - Impingement

- 3-D Eulerian non-particle-tracking module based on FEM
- Takes into account drag, buoyancy and gravitational forces
- Can simulate supercooled droplets or snow particles
- Produces field values of LWC and droplet velocity, as well as catch efficiencies on all walls

und De-icing International Conference, Chicago, June 2003

Computational Approach (5) - Ice Growth

- 3-D ice growth module, uses a Finite Volume Method
- Addresses both streamwise and cross-flow directions simultaneously
- Based on the assumption of thin film on the surface
- Does not require empirical relations for convection heat transfer; these are taken from air flow solution

FAA m-mgm. Icing/Ground De-icing International Conference, Chicago, June 2003

Computational Approach (6) - Heat Transfer

- 3-D conjugate heat transfer interface
- Can be used for any convection-conduction problem, with any number of interfaces
- Includes thin film calculation module for evaporation
- Can accommodate non-matching grids and different types of meshes at all interfaces (any tetrahedral, hexahedral, prismatic, pyramidal or hybrid combinations)

Computational Approach (7) - Adaptation

- Is needed to accommodate the odd shapes of ice (large roughness)
- Edge-based, anisotropic (highlystretched) mesh adaptation module
- Mesh movement, edge refinement, coarsening, swapping
- Increases accuracy and reduces mesh efforts
- Example shown here is FENSAP Euler solution over a complete 747 (upper portion of wing shown)

Computational Approach (8) - Actuator Disk

- Implementation of a through-flow actuator disk model in finite element
- Infinitely thin disk, without inlet-exit pairs
- Injects adequate amounts of momentum and energy in flow stream
- Satisfies mass conservation and therefore implicitly creates streamtube contraction upstream and downstream of disk
- Disk can be of arbitrary shape and attitude
- Can be used to simulate propellers and rotors, as well as internally for ducted fans

Numerical Results (1)

- Increasing complexity from:
 - 2-D airfoil
 - 2-D airfoil with flap deployed
 - 3-D wing including sweep and dihedral
 - 3-D wing in tunnel
 - 3-D tiltrotor aircraft without rotors
 - 3-D tiltrotor with rotors

- All test cases run with:
 - Single droplet size
 - Equivalent flight and atmospheric conditions
 - Tiltrotor aircraft components in forward flight configuration
 - Unstructured tetrahedral and prismatic meshing

Numerical Results (2)

- Incidence of 3.1° AoA in 2-D and equivalent sectional lift in 3-D
- Altitude of 2694 ft
- Ambient temperature of -4 °F
- True airspeed of 194 knots
- LWC of 0.3 g/m³
- Droplet size of 19.2 µm
- Accretion time of 15 minutes

Numerical Results (3)

2-D airfoil without and with 19° flap deflection

Mach number distribution

Numerical Results (4)

2-D airfoil without and with 19° flap deflection

Resulting ice shapes

The BA 609

Numerical Results (5)

3-D wing

Collection efficiency

Mach number distribution

Resulting ice shape

Numerical Results (6)

 Differences between 2-D airfoil and 3-D wing section are mostly due to tunnel effects

FAA In-flight Icing/Ground De-icing International Conference, Chicago, June 2003

Numerical Results (7)

3-D wing simulation, including icing tunnel effects

Collection efficiency

Cylindrical mounts

Simulated fuel vent

FAA In-flight Icing

cago, June 2003

Numerical Results (8)

Collection efficiency on fuel vent

Collection efficiency on icing tunnel sidewalls

Numerical Results (9)

Ice growth on wing leading edge

Ice growth on fuel vent

Numerical Results (10)

Collection efficiency

3-D complete tiltrotor aircraft, without rotors

Ice growth at junction of outboard wing and conversion actuator fairing

Ice growth at junction of empennage and stabilizer

FAA In-flight Icing

Numerical Results (11)

- Complete tiltrotor aircraft with propellers modeled as actuator disks
- Flow-through actuator disk concept implemented via FEM
- Different from exit/inlet actuator disk concept
- Source terms add momentum, angular momentum, energy and pressure to flow field
- Disks are transparent to droplets, but their effects are felt through the modified flow field

The FEM-based Actuator Disk Model

$$\int_{\mathcal{V}} \left\{ W_{i} \frac{\partial Q}{\partial t} - \left[F(x) \frac{\partial W_{i}}{\partial x} + F(y) \frac{\partial W_{i}}{\partial y} + F(z) \frac{\partial W_{i}}{\partial z} \right] \right\} dV$$

$$+ \int_{A} W_{i} \left\{ F(x) n_{x} + F(y) n_{y} + F(z) n_{z} \right\} dA + \int_{D} W_{i} \left\{ \vec{F} \cdot \vec{n} \right\} dA = 0$$

Numerical Results (12)

3-D complete tiltrotor aircraft, with rotors

Mach number distribution and streamlines

FAA In-flight Icing/Ground De-icing International Conference, Chicago, June 2003

Numerical Results (13)

3-D complete tiltrotor aircraft, with rotors

Sectional cut of droplet velocity vectors

Numerical Results (14)

3-D complete tiltrotor aircraft, with rotors

Collection efficiency

Numerical Results (15)

Ice accretion larger than 1 mm, no rotors, isometric and side views

Numerical Results (16)

Ice accretion larger than 1 mm, no rotors, top and bottom views

Numerical Results (17)

- 2-D results do not always provide the real picture
- 3D CFD capability can model complete icing tunnel test section for "correct" experimental comparisons
- Including rotors as actuator disks changes the location of the attachment line and collection efficiency peak

Conclusions (1)

- Method can handle complex geometries of an industrial interest in a cost-effective way
- Incremental cost of icing analysis is small compared to volume mesh generation for complex bodies and flow solution (already done by CFD groups)
- Progress was demonstrated through problems of increasing geometrical complexity

Conclusions (2)

- CFD can complement testing to gain understanding of unavailable conditions
- CFD does not require use of scaling laws and eliminates potential experimental inaccuracies associated with control of water flow rate, relative humidity, temperature, droplet size, tunnel walls, truncated models, etc.
- CFD is another tool in the toolbox of the icing analyst to design improved ice protection schemes

Future Work

- Conduct icing analysis of helicopter in forward flight with main and tail rotors modeled; difficulties are associated with advancing and retreating portions of blade circumference
- Use mesh adaptation strategies to move mesh around iced surfaces; it is expected that it will provide more robustness than ALE, especially for concave surfaces

